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Outline

Motivation: NRQCD/HQET and Reparametrization Invariance (RPI)
Lorentz Invariance using Wigner's Little Group

Invariant operator method

Other application: SCET

Summary
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Motivation: NRQCD/HQET

How to construct an effective theory for a heavy, non-relativistic particle.
Example: NRQCD/NRQED, HQET [Caswell, Lepage '85]

@ Describe particle with mass M and four-velocity v* by field v, :

}Wv = wv

(= assume small k in p = Mv* + k*)

@ Write down all operators (to order 1/M") compatible with
symmetries: gauge symmetry, C, P, ...

— Can use field redefinitions to get rid of 0;'s, except for 1st order
kinetic term ( “canonical form™).
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]
NRQCD/HQET: Lagrangian

Also, remove mass term by 1, — e™V*y, .

@ In the particle’s rest frame, v = (1,0,0,0)
D2 B [D-E] o (DxE-ExD) }w

_ o -
L= .Do v .
P iD” + 2M+6Fg M +cpg a2 +ics g PYYE

(Note: This is only rotationally invariant, not Lorentz invariant!)

L, =

a [pB
_ D2 o Gaﬁ \ I:DJ_GQB]
3 L af 7
w”{'(V'D)‘Qm‘CFg 4 ez BT g P
where DY = D* — v#(v - D)

o Coefficients ¢; can be obtained by matching to full QCD calculations
(perturbatively or lattice QCD).
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.
Reparametrization Invariance

e Computations of ¢;'s require quite some effort/time/...
Can we simplify somehow further? Are these coefficients related?

@ The decomposition of the momentum p* is not unique
p" = MvH + k*
= Get the same p* for

(v,k) = (v+q/M, k —q) with v = (v+q/M)? =1

Reparametrization Invariance (RPI)

The Lagrangian must be invariant under v — v + q/M
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.
Reparametrization Invariance |l

How do the fields transform under RPI?
o For our effective fields: 1, ~ e™"X¢)
— Fields pick up a phase €9 under RPI.

@ However, non-scalar fields also have spinor/vector-indices.

General RPI for particle with spin s [Luke,Manohar '92]
®, — TN, v+ q/M)TTA(D, v) D,

::;(r(D)

— N(w, v) such that w = A(w,v)v and v = (v +iD/M) and & = .

?7 7apq° D}

i

aph
- —1+_+M
2M 2M(M|u| + M +i(v- D)) 2M 4M2

X(D) =1+ = TR
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]
RPI - Relations

o Consequences for the Lagrangian
D? - Gaﬁ VAOq DO‘, G/\B
v_wv{/D v—cz—J‘—chgﬁ +ics g A ﬂ{ L }+ Py

@ We demand invariance under

v—ov+qg/M
aph
1+i+L

Yy e oM T T a2

= The coefficients must obey

RPI - Relations

C2:1

C5:2CF—1
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The origin of RPI

@ How does one get the X(D)-part of the RPI-transformation?

"In fact, we have not been able to follow the arguments (...)
regarding the derivation of the reparameterization trans-
formation step by step. To which extent this is due to our
own inabilities, and to which extent the arguments are
actually inconclusive or wrong, is not completely clear to
us at each point, either. Therefore we decided to investigate
the issue on our own along somewhat different lines.”

[Finkemeier, Georgi, Mclrvin '97]
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-
The origin of RPI - |l

There are strong “hints" as to the origin of RPI:
@ QCD is Poincaré invariant with generators

h:iat,
p:_187
j=rxp+3,

k=rh—tp+iX%,

Poincaré commutation relations (PCR)

[h,p'] = [h.j] =0 [p',p/] =0

5] = iey" [/, o] = ict¥pt
[h, W] = —ip/ [p'. K] =—id"h
[ji7 KJ] = ieljkkk [ki’ kJ] _ —iEUkjk

= The conserved charges in NRQCD should also obeys these PCRs.
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The origin of RPI - Il

o Calculate conserved charges [Brambilla, Gromes, Vairo '03]

o-B D, N i o-[Dx,N
‘/"WT( me e s G Dg[smz]"csg[w]+~->¢

P:/d3x (w (—iD)¢+§[nax,Ba]),
J:/d3x (W( x (=iD) + )w+ x x [M7x, Ba])
K:—tP+/d3x¥—k(l) /dax (ﬂwi X(_,-DW),

(k1) is a coefficient to be determined.)
+ Quantize canonically:

[N(x, £),AQy, )] = i68 (x = y) | {$a(x,1), ¥}y, )} = 3apd® (x —y)
+ Enforce Poincaré algebra:

Relations for coefficients ~ RPI relations

k) = 1, and =1 c=2c—1,...
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]
RPIl ~ Lorentz ?

Conjecture (Theorem?)

RPI is enforcing Lorentz invariance of the Lagrangian

= Let's forget about NRQCD and RPI for a moment and start from
scratch

How can we make a non-relativistic EFT Lorentz invariant? )
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Wigner's little group in QM

How do QM states transform under Lorentz transformation?
e States are characterized by the value of p?> = M? and the sign of p°.
e Pick a reference vector k*, e.g. k¥ =(M,0,0,0), and a standard
Lorentz transformation L(p), s.t. L(p)k = p for any such p.

Define the one particle states

lp, m) ~ L(p) |k, m)

@ Under a Lorentz transformation

|p, m) = Alp,m) ~ L(Ap) * L(Ap) ™" * A L(p) |k, m)

/

-~

=:W(A,p)

e W(A,p) € Wigner's little group C Lorentz: W(A, p)k = k.

= W(A, p) [k,m) = " Dpm[W(A, p)]

m/

k, m’>
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-
Wigner's little group in QM - Il

o, m) = Alp,m) ~ 3" Dy W(A, )] L(AP) [k, 1) J

m/

@ The coefficients D,y m[W (A, p)] form a unitary representation of the
little group.
= The little group determines the unitary rep’s of the Lorentz group.

Unitary Representations of the Lorentz group [Wigner '39]

(Infinite dim.) Unitary representations of the Lorentz group are given by
U(A) |p, m) ~ DIW(A, p)] |Ap, m)

where D is a rep. of the little group element W(A, p) = L(Ap) LA L(p).

@ What is the structure of the little group?
— For a massive particle choose for example k = (M, 0,0,0)
— little group is SO(3)
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|
W (A, p) for a massive particle

Let's compute W(A, p) for k = Mv and L(p) = exp[—i@jag%vﬁ].

@ For elements of the Little group, i.e. “rotations” with Rv = v,

W(R,p) =R J

This will simplify things a lot!

@ The remaining Lorentz transformations are "boosts’ with
Bv = v — q/M, for infinitesimal g with g-v =0,

- a B a8
i q°p] —piq
W(B,p)=1—~ |TPL=PLT
(5. p) 2[I\/I(M+v-p)

Jap + 0(q%) J

with p§ = p® — (v - p)v=.
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-
Wigner's little group in field theories

Let's apply this to field theories

Demand invariance under

ba(x) = D[W(A, i0)]ap¢p(A " x)

@ For rotations with Rv = v
W(R,id) =R
No dependence on 0.
@ For infinitesimal boosts with Bv = v — qg/M
q*id% —i92q°
M(M + v -i0)

) i
W(B,Ia) =1- 5

] TJap + O(q?).
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What about Lorentz invariance?

For Simplicity, choose v = (1,0,0,0). The corresponding generators are

Rotations
j=rxio+3%

Boosts

> xi0
M + /M2 — 92

o With h=i0; and p = —i0 these satisfy the PCR on fields which obey

i0:d = /M2 — 824

= Theory seems to be Lorentz invariant.

k:riat—tia—i-

BUT: Appearance of 0 in spin part of k violates gauge invariance! )

= Consolation: At least the free theory is Lorentz invariant :)
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-
Lorentz invariance of the interacting theory

Appearance of 9 in W(B,id) (= spin part of k) violates gauge invariance.
@ Obvious fix: Replace 0 by covariant D = 0 — igA.
= W(A,iD)¢, transforms covariantly under gauge transformations.
@ This spoils PCRs: Does this still describe a Lorentz invariant theory?

— The answer is YES.

Let's prove it by showing

@ The charges in the interacting theory obey the Poincaré algebra.

@ One obtains a Lorentz invariant S matrix.
S=IlimroooUT)IQ=T)  with Q(T)=etTe T
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-
Lorentz invariance of the interacting theory - Il

Condition for a Lorentz invariant theory

Lorentz invariance of the S matrix < S commutes with Hg, Pg, Jo and Kp.

@ Note, the free charges Hy, Pg, Jo, Ko obey the PCR, since the
generators hg, pg, jg, ho do.
@ The charges in the interacting theory are (H, P, J, K):
e H=Hy+ V, while P=Pg and J = Jg
= Thus [K',P/] = —i67H implies K # Kq!
@ How do we find the right form of the generator k?
| claim we already did.

Lorentz invariance of L

Demand invariance under rotations & ¢, (x) — W(B,iD)¢,(x' = B~x)

— Now prove the Lorentz invariance of the S matrix.
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Lorentz invariance of the S matrix

Follow the standard proof of Lorentz invariance for the S matrix

[e.g. Weinberg Vol. 1]

Need to show two things

o [Pov V] = [J07 V] =0
Q [K',H] = —iP', with “smooth” AK = K — Kj.

Then

@ All free Lorentz charges commute with the S matrix
= S matrix is Lorentz invariant.
@ In addition, charges in the interacting theory are similarity transforms
of the free ones, e.g. KQ = QKg with Q®g = ;.
= (H,P,J,K) obey the Poincaré algebra.
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N —
Lorentz invariance of the S matrix - Il
tol) [Po,V]=0:V

[Jo, V] =0: true since Rv = v: v
to 2) k is of the form

3 xiD +O(g
M + /M2 — D?

Thus the conserved charge has the form

k=rid; — tid + )
K=—-tP+(..)

with no explicit time dependence in the dots.
= In the Heisenberg picture this then yields

0=9K= 2K+ i[H, K] = —P +i[H,K]

hence [H, K'] = —iP'. v
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N —
Lorentz invariance of effective theories

Lorentz invariance

Our procedure using Wigner's little group yields a Lagrangian with a
Lorentz invariant S matrix!
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-
Field strength dependent terms

Boost transformation (includes an ordering prescription)

W(B,iD) =1 — é

q*iD? — iD¥¢P
M(M + v - iD)

Jap +0(g)°

* What about the field strength dependent terms?
— They do not change the free case limit.
— They do not alter the proof of Lorentz invariance.

= We are free to add such terms if needed:

o Allow us to perform field redefinitions containing g (i.e. also G, ).
o Needed to maintain canonical form of the Lagrangian (i.e. only one 9;).
o Will be needed later in the invariant operator method.
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-
How to build a Lorentz invariant theory

For a general theory

,CNqj_)v{...VM...DM...’}/M...EMVQ’B.--}¢v

@ For generalized rotations W(R,i0) =R

Pv(x) — R¢V(XI)
oM — ROV and  AF(x) — RM AY(X) J

— L is invariant, since Rv = v and y* = 7?,% (REAY)RTE.
2
@ For boosts with Bv = v — q/M + O(q?)

du(x) = W(B,iD)dy(x)
O — B and  AM(x) — BLAY(xX) J

— Demand invariance of £ under this.
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N —
Connection of Lorentz invariance to RPI

@ We can rewrite the transformation law under boosts: Invariance under
ov(x) = W(B, iD)¢V(x’), o+ — B’f,a’” and Af(x) — B’f/A”(x’)

is equivalent to invariance under (just using BB~ = 1)

Lorentz invariance = RPI

ou(x) = BTW(B,iD)¢,(x), and v —w:=Blv=v+qg/M

@ For a spin 1/2 spinor we obtain:
B-1W(B,iD) = {1+ 54}

aagqo‘Df
M(M + i(v - D))

1
2M +2

o Together with ©, — eMvX® , one obtains the RPI transformation.

@ However, we are not changing v!
We just note an mathematical equivalence.
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-
Obtaining coefficient constraints

Can implement Lorentz invariance on the field level, and obtain the
same relations between coefficients as before, e.g. at order 1/M>:

e e i
5Ly =t [ch[Dr,q-EHg(cF—cmsz)q-[ax B+ /(e ) {a-D,0%)
ie ie
+§Cs{Dt,U><CI'E}+§(C2+2CF*CS*2CW1+2CW2){Q'D,U'B}
ie ie
+§(fcz+c,:fcp/p) {o'~D,q~B}+§(fc;:Jrcsfcp/p)q-a(D-B+B~D)}w.

Lower order relations: ¢, =1, cs=2cr—1
field redefinition to change W(B, iD) :
¢(X)_>e_,-q4x{1+ iq-D oxq-D i 4 E+ -5 eq-o x E_’__“}w(B—lX)

vz~ amz et T gus

We get a vanishing variation iff

aa=1 2ecy=cp—cr, cwz2=cw1—1, cp=cr—1

— Does this work to any order, i.e. is there an invariant Lagrangian to all

orders in 1/M? J
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.
Invariant operator method

@ We started with a Lagrangian, which was not Lorentz invariant.
(Only rotationally invariant before enforcing coefficient relations.)

— Is there an inherently Lorentz invariant construction?

@ We can answer both questions by the same construction:
Learn from RPI

Find a redefinition (v, iD)

o, =T(v,iD)p, A, b,

@ Under a Lorentz transformation (in “RPI version™)
¢, :=T(v,iD)p, — T(Atv,iD)A"TW(A,iD)¢,
= [(v.iD)gy
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.
Invariant operator method - Il

@ Assume we had an operator I'(v, /D) that obeyed
F(A"1v,iD)A"TW(A, D) = T(v,iD).

then the field ®, := (v, /D), is invariant under Lorentz.
After ¢, — e, this becomes (need only consider B)

Invariance Equation

F(v+q/M,iD — q)B*W(B,iD + Mv) =T(v,iD).

and under Lorentz boosts:

o, — 9%, J

= Build invariants using 4* and V¥ = v* + iD¥/M
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-
Solving the invariance equation - free case

Invariance Equation

F(v+q/M,iD—q)B*W(B,iD + Mv) = T(v,iD).

:=X(v,iD)

o Note that in the free case we can write (with V. = v¥ + 0" /M)

X(v,i0) = N (Viree, v + a/M) ™" 5 Ay (Viree, v)

1
2

q 1 v iv-0
=14+ 2=+ -—0"1"q.0, |1 —
+2M+4M20¢ q,0 i +

Comparing to the invariance equation one can see:

Closed, all-order solution

N j 1 1 1
[(1,10) = Ay (Prensv) = 14+ D + 1 |- g0 = 3iduiv-3] +..
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Solution to the invariance equation - interacting case

@ Why not proceed as before? Just replace 0 — D

RPI - invariant operator method

8
AF % |:%(’DL)21V D + A (_g(iDL)z (v D)z)] +ou/MY

: 1 1
reeive(y, D) =1+ LT { g(DL)? = SiByiv- D]

— Unfortunately, the interacting case is more complicated!
o M€y iD) is NOT a solution to the invariance equation starting at

order 1/M3.
= The "“RPI invariant operator method” starts to fail to build a Lorentz

invariant Lagrangian at order 1/M4!

One needs to solve the invariance equation explicitly
(pedestrian way or systematically oder-by-order)
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-
Solution to the invariance equation - interacting case |l

Invariance Equation

(v + q/M,iD — q)X(v,iD) = (v, iD).

@ The systematic solution shows, that we may choose

X(v,iD):1+i+ 1 ol,q" DY (1—'V'D)+...

2M  4AM? M
e Expanding I in powers of 1/M

1 1 1
Fr=1+4+=-rW4 @4 - G4
Sy LRy e oy A

e Find the solution order by order (remove terms by field redef.)

1 1 1
r(l):iim, F(Z):—g(iDLf—EiDliwD
1. . ’IDL 3,. . g e g ny .
r = Z(IDL)2IV~D—|— 5 —é(IDL)Z + (iv- D)?| — g Guvv"DY — Roi Guuild,
— Last two terms are essential in solving the invariance equation J
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N —
Relations for the coefficients

@ Since methods differ at 1/M3 in (v, iD), the relations for the
coefficients in the Lagrangian at order 1/M* are different.

o E.g. NRQED at order 1/M* [Hill, Lee, Paz, Solon (in progress)]
. 5. 2 i i
L~ wT{iDt + CFEZMB + CDE[SME] — CA282 1:,\/,3 + icx4e2% + ... }1/}.

e Enforce Lorentz (field transformations or invariant operator method)

Cx4 = 4c,2_— +4cp —2cpp — 1 — 4cr

@ Using the incorrect RPI invariant operator method

Cx4 = 4c,2_— +4cp —2cpp — 1 — b6¢r

@ Could also be checked using the method of Brambilla et al.
(if you are masochistic or want to torture your student)
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N —
Generalizations

e Examples all shown for spin 1/2, but method is much more general.
@ Can be easily extended to any spin
— e.g. spin 3/2 ¢ with invariant constraints yu!' = 9! and y,¢f = 0.
or self-conjugate fields
— e.g. a Majorana spinor ¢y = 15, = C)y;, for an operator Yy O(v)ihu:

O(v) = CO(—v)*Ct

@ Less trivial generalization: Other types of little groups, e.g. for
massless particles.
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.
For massless particles

Soft-Collinear-Effective theory (SCET)

@ Build an effective Lagrangian for massless quarks, separating hard,
soft and collinear/anti-collinear degrees of freedom.
= There are two fixed light-like vectors in the Lagrangian:
e Collinear: n= (1, )
e Anti-collinear n = (1, —n)

The Little Group for a null vector n
IE; = Translations and rotations in 2d

— Every W can be brought into the form W = S(«, 5)R(0)
e S(a, B) must act trivially on physical states: S(a, 8)®x = Oy

UN) Oy ~ e Ny, J
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For massless particles: SCET

o Calculate W(A, p) = L(Ap) "t A L(p) for:

Q [n— nn— A Rotation: 1 dof,

Q@ [n—nn—n+s.] Parabolic LT: 2 dof,
Q@ [n—n+ti,n—n] Parabolic LT: 2 dof,
Q@ [n—=(1+n)nn— (1-n)n Boost: 1 dof.

@ Decompose W = S(an k, B k)R(0a k)

— S(ak, Bak) gives a constraint, R(6a «) the transformation.

@ Invariant W =A= R(0nx)

Q@ Non-trivial W = S(an, Bak)R(Or k)
@ Trivial w=1

© Trivial w=1
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.
For massless particles: SCET - |l

@ In the non-trivial case, one obtains the constraints
e Scalar ¢: -
o Spinor £%: ¢ =0 & pps =&
o Vector A*: Does not exist/reduces to scalar!
As it must, 3 only gauge theories for vectors!
o T,,: Decomposes into a scalar T = TZ and F,, = 0,A, — 0 A,.
o ...

@ The corresponding transformation for £ is

£ — <1+ h- 12&)

This agrees which the one previously obtained from RPI in SCET.
[Manohar, Mehen, Pirjol, Stewart '02]
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-
Recap: How to get a Lorentz invariant effective Lagrangian

To build a Lorentz invariant, effective theory for a heavy particle
o |dentify degrees of freedom, e.g. yQ, = Q,.
@ Determine the Little Group for v and find an L(p).

then

1.) Constructive method

@ Write down a Lagrangian that looks formally Lorentz invariant, only
constrained by gauge symmetries, C, P, ...

@ Make Lagrangian invariant under W(A, p), where p* = iD*.

or

2.) Invariant operator method
@ Solve the invariant equation for ['(v,iD) (and W(B, p))
o Use v and V¥ = v# 4 iD* /M to build invariant Lagrangian
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N —
Conclusion

@ Wigner's little group allows the construction of Lorentz invariant
EFTs by transformations on the field level.

@ It clears up the connection between Lorentz and RPI.
— Shows failure of the “RPI - invariant operator method” at 1/M*
@ Method can easily be generalized to any spin, self-conjugate fields,
massless fields, (space-like case?)...
— Applications to dark matter EFTs, atomic bound states, ...

@ We never refered to QCD directly as a UV completion
— No need for a UV theory, e.g. effective theory for protons.
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Thanks for your attention J
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-
Solving the invariant equation

F(v+q/M,iD — q)B™W(B,iD+ Mv) = (v, iD) )

@ Expand everything in orders of M
1

M

X531Wz1+w&=1+f[ w2

X/SI)+1X(2)+...],
r—1+4roy Lrag

M M2
@ In T, find term linear in g

9 19
D — — ] =gt — il
(v +q/M,iD—q)—T(v,iD)=q ( 8iDMr+M8vur)+'”

Need to solve

Oy _ 0
9iDn v

n—1 n—1 1 n—2 2 0 n) — n
”r( ) 4 r( )X;(L)”( )X£)+---+F()X£)=Y,5)

@ Looks like V¢ = E in electrodynamics.
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-
Solving the invariant equation - |l

Solution for (™

: 1.y, 0
[ = jptyln — ilDﬁlDime(”) o

@ In EM: Need V x E =0 to solve V¢ = E.
Here:

Contraint for Y("

9 n) _
6mwnl_0

o Let's solve the constraint for Y (™.
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-
Solving the invariant equation - Il

@ Plug in definition of Y and solution for lower order ['s

= X = B7'W must obey a contraint.

Contraint for X ("
0 () _ 5]

_ 9 o)) -y =2y @ @) yln-D) ()
oD M = T T X Xy TR XY e XX = 2

@ Again EM: This looks like V x A = B.
— B needs to obey V -B = 0.

Contraint for Z("

0
_\, Hvpo (n)
0= voe oiDr Ly

Johannes Heinonen (EFI/UChicago) Lorentz Invariance in EFTs 09/20/12 37 /37



Solving the invariant equation - |V

o Can show that constraint for Z(") is obeyed by induction,i.e. if we
have XM, ..., X("=1) obeying all constraints, then so does Z(".

= We can "“solve” for X("), but what does that mean?
@ Before: we can add terms to X = B~LW that vanish in the free case.

—» Constraint for X(": we must add some such terms to solve for I'.

Solution for X("

n v Vm 8 8 n S(n
X = +2Z (DL Dy i Gipe (Zém)“ Zﬁm)“)

where X(") = naive covariantization of given X(id), and Z
corresponding to it.

@ Now use this to solve for Y and I

Johannes Heinonen (EFI/UChicago) Lorentz Invariance in EFTs 09/20/12 37 /37



-
Solving the invariant equation - V

o Since Z(" has mass dimension n — 2, the first field strength
dependent terms can appear at n = 4.

= We find
1
1 7 e
X = xp
2 1 4 o2
X = Lopu0” = %0

s

1 "
3 1 v 3
x():jowo iv-D=X,

v 1 . ]. . N\ . led o
X9 =71, D Z(,V D) — f(,DL)2] +%,DL (—/G;i, + 030G — 00y Gy )

=X

= Find extra terms, whichh are needed to obtain the correct (v, iD).
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